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Abstract

The aircraft parameter estimation problem is
used to illustrate the utility of parameter esti-
mation, which applies to many engineering and
scientific fields. Maximum 1ikelihood estimation
has been used to extract stability and control
derivatives from flight data for many years. This
paper presents some of the basic concepts of air-
craft parameter estimation and briefly surveys
the literature in the field. The maximum likeli-
hood estimator is discussed, and the basic con-
cepts of minimization and estimation are examined
for a simple simulated aircraft example. The cost
functions that are to be minimized during estima-
tion are defined and discussed. Graphic represen-
tations of the cost functions are given to illus-
trate the minimization process. Finally, the
basic concepts are generalized, and estimation
from flight data is discussed. Some of the major
conclusions for the simulated example are also
developed for the analysis of flight data from the
F-14, highly maneuverable aircraft technology
(HiMAT), and space shuttle vehicles.

Nomenclature

A, B, C, system matrices
n, F, G
ay lateral acceleration, g
Cg coefficient of rolling moment
Coi coefficient of pitching moment
Cnh coefficient of yawing moment
C"B equivalent dynamic directional
dyn stability
Cy coefficient of sideforce
f(+), g(+) general functions
GG* measurement noise covariance matrix
H approximation to the information
matrix
Ix, Iy, moment of inertia about subscripted
17, lxz axis, slug-ft2
J cost function

*Substantial portions of this paper are
taken from two publications of the author,
Refs. 1 and 2.

**Chief, Fluid and Flight Mechanics Branch.
AIAA Fellow.

This paper is declared a work of the U.S.
CGovernment and therefore is in the public domain.

L rolling moment divided by Iy,
deg/secZ; or, iteration
number

rolling moment, ft-1b

Lyg rolling moment due to yaw jet,
ft-1b per jet

M Mach number

N number of time points or cases

n state noise vector; or, number of
unknowns

p roll rate, deg/sec

q dynamic pressure, 1b/ft2

Re Reynolds number

r yaw rate, deg/sec

t time, sec

u control input vector

v total velocity, ft/sec

X state vector

z observation vector

Z predicted Kalman-filtered estimate

a angle of attack, deg

B angle of sideslip, deg

A time sample interval, sec

$ control deflection, deg

S$a aileron deflection, deg

SOF differential elevon deflection, deg

Sp " rudder deflection, deg

n measurement noise vector

u mean

13 vector of unknowns

g standard deviation

T time, sec



) transition matrix; or, bank angle,
deg

¥ integral of transition matrix

Subscripts

p, r, a, B, partial derivative with respect to

85, SpE, Sp subscripted variable
0 bias; or, at time zero
min minimum value

Superscripts

predicted estimate
estimate

* transpose
Introduction

It is difficult to present a topic as special-
ized as aircraft parameter estimation in a way
that will interest a generalized audience of
mathematicians, scientists, and engineers. The
approach here is to portray parameter estimation
as a specialized "curve-fitting” technique that
can be applied to a broad class of problems. Much
effort is expended in a variety of disciplines on
a form of curve fitting, more specifically, the
correlation of observed or inferred data with an
assumed (though perhaps in a high- or infinite-
dimensional space) mathematical model that is
based on phenomenological considerations. This
broad class of problems is referred to as system
identification. :

The application of system identification,
sometimes referred to as the inverse problem
(paraphrased as, Given the answer, what is the
question?), presumably goes back to prehistoric
times as humanity tried to master the environment
by understanding, based on observation, certain
phenomena (probably simple ones). Many of the
physical laws stated by the Chinese, Egyptians,
and Greeks were based on the same principles as
are currently used in system identification.
Through advancing technology and mathematical
rigor, we can apply much more sophisticated tech-
niques for making observations and for deducing
the underlying phenomenology, but the basic prob-
lem of system identification remains the same,

For most physical systems, information about
the general form of the system to be identified
often can be derived from knowledge of the system.
The most widely applied subfield of system identi-
fication is parameter identification, where the
form of the mathematical model is assumed to be
known. The model (an explicit function, a polyno-
mial expansion, a look-up table, a finite-state
machine defined for application of artificial
intelligence, or many other forms) contains a
finite number of parameters, the values of which
need to be deduced or identified from the obser-
vations. One of the favored forms of the model
for the most successful application is the state-
space form (a rigorous treatment of state-space
forms is given in Ref. 3). State-space models are
very useful for dynamic systems, in which responses

are time functions. Autoregressive moving average
(ARMA) models are also widely known; however,
discrete-time ARMA models can readily be rewritten

as linear state-space models,% so the discussion
of state-space models presented in this paper is
applicable to ARMA models.

An assumed model will not be an exact repre-
sentation of the system no matter how carefully
its form is selected. The experimental data will
not be consistent with the assumed model for any
parameter values. The model may be close but will
not be exact, i1f only because the measurements or
observations will be made with real, thus imper-
fect, sensors. Errors in observations and in the
model need to be evaluated in determining the
unknown parameters of the model. So the objective
becomes the application of the "best" model (in
some sense), instead of the correct model, to find
the "best" estimates of the unknown parameters;
this process is referred to as parameter estima-
tion. The currently favored approach to parameter
estimation, and the one discussed in this paper,
is to minimize the error, in the least squares
sense, between the model response and the actual
measured response; the estimates resulting in the
minimum error are the "best" estimates. The

theoretical formulation® and applicationb of the
output error technique (which is a maximum likeli-
hood technique that is used throughout this paper)
have been thoroughly documented.

Although the applications described in this
paper pertain to aircraft, the techniques have
been successfully applied in other fields where
the mathematical model and observations are ade-
quate. Parameter estimation may sound like one
more arcane subject, but it has application in any
field where observations must be made to agree
with the assumed physics of a problem. There are
many obvious applications in a variety of fields,
such as, spacecraft dynamics, gravitational per-
turbations, fluid dynamics and mechanics, optimal
control, and guidance,

The application of the maximum 1ikelihood
technique for parameter estimation of aircraft
coefficients demonstrates a successful application
of system identification technology. Analysts
in the aircraft community accept and use system
identification techniques on a routine basis.
Although there are isolated problems (primarily in
extending the application to more difficult flight
regimes, such as where the aircraft is dominated
by poorly understood separated flow), there is
little doubt that the basic application is highly
successful. Contributing to this success are a

well-understood, time-tested,’»8 physically

derived model form that is reasonably represent-
ative of the true vehicle in most flight regimes;
high-quality measurements of several relevant
states; the ability to apply inputs specifically
for system identification; and engineers familiar
with system identification, aerodynamics, aircraft
equations of motion, and the associated aerodynamic
coefficients.

This paper first presents a brief survey of
the contributions tc system identification, and
specifically aircraft parameter estimation, up to
1980, when the maximum likelihood technique began
to completely dominate the field. (Refs. 6 and 9



give a broad view of contributions since 1980,
Ref. 9 is a bibliography of nearly 500 books,
papers, and reports related to parameter esti-
mation.) Some common uses of the estimated
parameters are then discussed. The technique
used for parameter estimation is then described,
followed by an examination of the computational
details and cost functions involved in error mini-
mization. Finally, applications of the technique
for improving high-performance aircraft and the
space shuttle are described.

History of Parameter Estimation to 1980

General System Identification

The transition from hit-and-miss, rule-of-thumb
system identification to mathematically sound
approaches has been gradual; certainly no single
germinal work can he referenced. Gauss,10 in
1809, discussed the inverse (system identifi-
cation) problem and suggested some statistical
approaches that are relevant even today. The
discussions of Douglas,ll in 1940, and Gelfand
and Levitan,12 in 1951, pertaining to the inverse
problem certainly qualify as truly significant
works contributing to the state of the art. The
formulation by Feldbaum,l3 one of the more sig-
nificant works aimed at the current direction of
investigation, is somewhat different than others
discussed, but he did look at identification and
control of the system as a single problem, the
"dual control" problem. During the 1960s, a
plethora of publications was evidence of increased
interest in problems of this type. Much of this
interest was stimulated by the well-known early
works of Kalman.

The bulk of general system identification
theory and application up to 1980 has been sum-

marized in several excellent survey papers.l4-17

The system identification problem can be
divided into two major subsets: deterministic
(without state noise) and nondeterministic (with
state noise). There are two classes of tech-
niques for identification of nondeterministic
systems: the Kalman filter (or more generally,
the extended Kalman filter) technique and the
maximum likelihood technique. Many precise
applications do not truly fall into these classes,
but they do tend to mimic one of the two tech-
niques. The extended Kalman filter (discussed

by Astrénl8 and Kashyapl9) has been widely

applied; however, this paper primarily examines
the maximum 1ikelihood estimator, proposed by
Balakrishnan20-22 and developed in Refs. 23 and 24.

Aircraft Identification

In the following chronological survey of
investigations that led to the development and
widespread acceptance of the maximum likelihood
estimation technique for aircraft coefficient
estimation, the more straightforward deterministic
analysis is discussed first, followed by a brief
discussion of nondeterministic analysis. Some of
the investigations in estimation of unknown coef-
ficients from aircraft dynamic response data are
contained in Refs. 25 and 26. The National

Advisory Committee on Aeronautics (NACA) had been
publishing reports on stability derivatives
(coefficients of the differential equations of
motion) since the early 1920s. (The reports by
Norton’,8 involved the identification of frequency
and damping ratios from flight data.)

Deterministic Analysis. The sophistication
and complexity of the methods used to estimate
unknown coefficients from aircraft dynamic flight
responses have increased over the past 40 years.
In the late 1940s and early 1950s the frequency
response methods (including steady-state oscilla-

tor analysis?/ and Fourier analysis28) increased
in popularity in aircraft analysis and in other
applications. These methods yield the frequency
response of the vehicle but not the coefficients
of the differential equations. Attempts were made
to extract these coefficients by selecting values
of the aircraft coefficients that resulted in the
best fit of the frequency response.29,30 Regres-
sion techniques, such as linear least squares3l
and weighted least squares30 techniques, were
also applied to flight data at about that time.
Unfortunately, regression techniques give poor
results in the presence of measurement noise and
yield biased estimates. The time vector tech-
nique32 has also been applied to flight data;
however, it yields an incomplete set of coef-
ficients, and the types of responses that can be
analyzed are restricted to fairly simple motions.
Analog matching techniques32,33 (time consuming
and somewhat tedious) have also been applied to
flight data but are limited because resulting
estimates vary with the skill and technique of
the operator. Comparisons of these early tech-
niques34,35 showed that a more complete method

of identification was needed.

In 1968, two independent studies36,37 of
nonlinear minimization methods (output error
methods) for obtaining aerodynamic coefficients
were published, one describing the maximum likeli-
hood estimator36,38 (with a Gauss-Newton tech-
nique) to obtain a complete set of aerodynamic
coefficients from flight data and the other
describing a quasilinearization technique37,39 to
estimate some coefficients of an aircraft. One
reason for the early success of these two methods
is that previous research had furnished a well-
defined model that adequately described the
resulting motion of the vehicle. These two early
results of aircraft identification by nonlinear
minimization renewed interest in analysis of
flight data. There was a later modification to
these techniques to include a priori informa-
tion.40 The minimization of this modified cost
functional does not result in a maximum likelihood
estimator, because it is based on the joint proba-
bility distribution rather than the conditional
probability. Other successful computer programs
have been reported.41-44 Extensive experience at

many installations25,26,45-58 had been obtained
using the maximum Tikelihood estimator technique
on dynamic flight responses.

Another approach, similar to these output
error methods, was the application of the Kalman

filter59 to estimate the aerodynamic coefficients.



Some of the early results obtained by the Kalman
filter technique were unsatisfactory; that is, the
estimates of both the states and the parameters
were biased and did not always converge to reason-
able results. Improved results were obtained by
adding the derivative of the state.f0 A weakness
of the Kalman filter method is its dependence on
the covariance matrix obtained from the filter,60
However, a technique was developed for obtaining
estimates of the covariance matrix with a subop-
timal Kalman filter.59 A successful application
of the Kalman filter to provide the state esti-
mates used for the estimation of stability and
control derivatives and performance parameters

was subsequently described, 61,62

Nondeterministic Analysis. As previously
mentioned, two classes of techniques were offered
for the estimation of systems with measurement
and state noise: the Kalman filter (or more
generally, the extended Kalman filter) tech-
niquel8,19,59,60,63,64 and the maximum likeli-
hood technique.21-23,65,66 The maximum likeli-
hood estimator for the nondeterministic case is
usually referred to as the filter error method.

The general appiication of the extended Kalman
filter was discussed in Refs. 18 and 19. The
extended Kalman filter for the discrete-time case
was applied to simulated aircraft data with a
state noise input.60 A similar applicationb3 to
aircraft flight response data gave inconclusive
results because the state noise input was small
and the system was nonlinear. Somewhat better
results were obained with an application of a
greatly simplified extended Kalman filter

techm’que.64

The maximum likelihood estimator was applied
to response data of an aircraft flying in atmos-
pheric turbulence;23 the resulting coefficients
were in agreement with results obtained for the
same aircraft flying in smooth air, that is,
without state noise.

Most of the results presented in this paper
are based on an output error method program;67
the INiff-Maine code of this program is capable
of using the Maine-11iff formulation68 (which
can account for effects of state noise), although
this feature is not used for the examples in
this paper.

Basic Uses of Flight-Determined Coefficients

The extraction of unknown aerodynamic coef-
ficients or stability and control derivatives
from flight data has been of interest for many
years.”»8 The coefficients are used to provide
final verification of the predicted full-scale
design and to assist in the flight testing and
verification of overall aircraft system perform-
ance.1,45 After the analysis of the flight
test data, the aircraft coefficients can be com-
pared with calculated coefficients, estimates from
computational fluid dynamics, and wind tunnel pre-
dictions, and these comparisons can be used to
update prediction methods for the improvement of

future aircraft designs.l»46 Once an aircraft is

built, the coefficients play an important role in
the expansion of the flight test envelope.l,47

As estimates of the derivatives become available,
they are used to upgrade fixed-based simulators to
assist in flight planning and aircraft control
system modification.l,48 In addition, the flight-
determined coefficients can be used to establish
compliance with the desired design specifications.
Flight-determined coefficients are also used to

establish the accuracy of airborne simulations49
and to identify aircraft parameters for adaptive

control.23

Definition of Estimation Technique

The parameter estimation problem can be
defined quite simply in general terms. The sys-
tem under investigation is assumed to be modeled
by a set of dynamic equations containing unknown
parameters. To determine the values of the
unknown parameters, the system is excited by a
suitable input, and the input and actual system
response are measured. The values of the unknown
parameters are then inferred based on the require-
ment that the model response to the given input
match the actual system response. When formulated
in this manner, the unknown parameters can be
identified easily by many methods; however, com-
plicating factors arise when application to a
real system is considered.

The first complication is the impossibility of
obtaining perfect measurements of the response of
any real system., The inevitable sensor errors are
usually included as additive measurement noise in
the dynamic model, and the theoretical nature of
the problem then changes drastically. It becomes
impossible to identify exactly the values of the
unknown parameters; instead, the values must be
estimated by some statistical criterion. The
theory of estimation in the presence of measure-
ment noise is relatively straightforward for a
system with discrete time observations, requiring
only basic probability.

The second complication of real systems is the
presence of state noise. State noise is random
excitation of the system from unmeasured sources,
the standard example for the aircraft stability
and control problem being atmospheric turbulence.
If state noise is present and measurement noise is
neglected, the analysis results in the regression

a1gorithm.6

When both state and measurement noise are con-

sidered,b8 the problem is more complex than in the
cases that have only state noise or only measure-
ment noise.

The final complication for real systems is
modeling. It has been assumed throughout this
discussion that for some value (called the best
value) of the unknown parameter vector, the system
is correctly described by the dynamic model.
Physical systems are seldom described exactly by
simple dynamic models, so the question of modeling
error arises. No comprehensive theory of modeling
error is available. The most common approach is
to ignore it; any modeling error is simply treated
as state noise or measurement noise, or both, in
spite of the fact that the modeling error may be



deterministic rather than random. The assumed
noise statistics can then be adjusted to include
the contribution of the modeling error. This pro-
cedure is not rigorously justifiable, but combined
with a carefully chosen model, it is probably the
best approach available.

It is possible to make a more precise, mathe-
matically probabilistic statement of the parameter
estimation problem., The first step is to define
the general system model (aircraft equations of
motion), which can be written in the continuous-
discrete form as

x(tg) = xg (1)

x(t)

fIx(t), u(t), €] + F(&)n(t) (2)

z(ti) = glx(ti), u(ty), €] + G(&)nj (3)

where x is the state vector, z is the observation
vector, f and g are system state and observation
functions, u is the known control input vector,

£ is the vector of unknown parameters, n is the
state noise vector, n is the measurement noise
vector, F and G are system matrices, t is time,
and - denotes derivative with respect to time.
The state noise vector is assumed to be zero-mean
white Gaussian and stationary, and the measurement
noise vector is assumed to be a sequence of inde-
pendent Gaussian random variables with zero mean
and identity covariance. For each possible esti-
mate of the unknown parameters, a probability
that the aircraft response time histories attain
values near the observed values can then be
defined. The maximum likelihood estimates are
defined as those that maximize this probability.
Maximum likelihood estimation has many desirable
statistical characteristics; for example, it
yields asymptotically unbiased, consistent, and

efficient estimates.38

If there is no state noise, then the maximum
Tikelihood estimator minimizes the cost function

2e) = 5 TL2(H) - 2l Tneen)
i=

* [2(t1) - 2.(t)] + 2N Tn|(66*) |

(4)

where GG* is the measurement noise covariance
matrix, Zg{tj) is the predicted response estimate
of z at tyj for a given value of the unknown-
parameter vector £ (with ~ denoting predicted
estimate), N is the number of time points, and

* denotes transpose. The cost function is a func-
tion of the difference between the measured and
computed time histories.

If Eqs. (2) and (3) are linearized (as is the

case for the stability and control derivatives in
the aircraft problem),

x(tp) = xo (5)

x(t)

Ax(t) + Bu(t) + Fn(t) (6)
z2(tj) = Cx(tj) + Du(tj) + Gn; (7)
where A, B, C, and D are system matrices. For the

no-state-noise case, the Zg(ti) term of Eq. (4)
can be approximated by

Xg(to)

x0(€) (8)

Xg(tie1) = o%g(ti) + wlu(ti) + u(ti+1)1/2 (9

Zg(ty) = CXglti) + Du(ty) (10)

where the transition matrix ¢ and the integral of
the transition matrix, y, are given by

¢ = exp[A(ti+] - tj)] (11a)
ti+l :
) =[ exp(At) dt B (11b)
ti

When state noise is impdrtant; the estimator
based on the nonlinear form of Eqs. (1) to (3) is

intractable, and ad hoc techniques are required.69

To minimize the cost function J(&), we can
apply the Newton-Raphson algorithm (or some other
minimization technique), which chooses successive
estimates of the vector of unknown coefficients,
€ (" denoting estimate). If L is the iteration

number, then the L + 1 estimate of £ is obtained
from the L estimate as

f = & - DRGEDT VOGN a2)

If (GG*)-I is assumed fixed, the first and second
gradients are defined as

N
P(E) = - B L2(t1) - 2e(ti) 1466 vz (64)]
(13)
2 S 1pg s
ved(e) = iZjltvaze(tm*(ee*) [VeZ,(t)]
) -1..2
- &Lt - 2t Ineen vz ()
1=
(14a)

The Gauss-Newton approximation to the second gra-
dient is

N
2 -~ s . *'1 5 N
VpI(E) = iZEEVzZe(t‘)]*(GG )IVE(44)] (14b)

The Gauss-Newton approximation is computationally
much easier than the Newton-Raphson method because
the second gradient of the innovation never needs



to be calculated, In addition, it can have the
advantage of speeding the convergence of the
algorithm, as is discussed in Ref. 6.

Figure 1 illustrates the maximum likelihood
estimation concept. The measured response is com-
pared with the estimated response, and the dif-
ference between these responses is called the
response error. The cost functions of Eqs. (4)
and (11) include this response error. The minimi-
zation algorithm is used to find the coefficient
values that minimize the cost function. Each
iteration of this algorithm provides a new esti-
mate of the unknown coefficients on the basis of
the response error, These new estimates of the
coefficients are then used to update values of the
coefficients of the mathematical model, providing
a new estimated response and therefore a new
response error. The updating of the mathematical
model continues iteratively until a convergence
criterion is satisfied. The estimates resulting
from this procedure are the maximum likelihood
estimates.

The maximum 1ikelihood estimator also pro-
vides a measure of the reliability of each esti-
mate based on the information obtained from each
dynamic maneuver. This measure of the reliabil-
ity, analogous to the standard deviation, is
called the Cramér-Rao bound5:24 or the uncer-
tainty level. The Cramér-Rao bound as computed
hy current programs should generally be used as a
measure of relative accuracy rather than absolute
accuracy. The bound is obtained from the approx-
imation to the information matrix, H, which is
based on Eq. (14b); the actual information matrix
is defined when evaluated at the correct values
{not maximum likelihood estimates) of all the
coefficients. The bound for each unknown is the
square root of the corresponding diagonal ele-

ment of H_l; that is, for the ith unknown, the

Cramér-Rao bound is VH'I(i,i).

The formulation and the minimization algorithm
previously discussed (Eqs. (4) to (14)) are imple-
mented with the INiff-Maine code (MMLE3 maximum
likelihood estimation program). The program and
computational algorithms are described fully in
Ref. 67. A}l the computations shown and described
in the remainder of this paper use the algorithms
exactly as described in Ref. 67.

Simple Simulated Example

For the discussion that follows, some knowl-
edge of differential equations is assumed. A
full derivation and a discussion of the aircraft
equations of motion are given in Ref. 6.

The basic concepts involved in a parameter
estimation problem will be illustrated by a simple
simulated example representative of a realistic
problem: an aircraft that exhibits pure rolling
motion from an aileron input. This example,
although simplified, typifies the motion exhibited
by many aircraft in particular flight regimes,
such as the F-14 aircraft flying at high dynamic
pressure, the F-111 aircraft at moderate speed

with the wing in the forward position, and the

T-37 aircraft at low speed,

Derivation of an equation describing this
motion is straightforward. Figure 2 illustrates
an aircraft with the x axis perpendicular to the
plane of the figure (positive forward on the
aircraft). The rolling moment L', roll rate P
and aileron deflection § are positive as shown.
For this example, the only state is p, and the
only control is &, The result of summing
moments is

Ixp = L'(p, 6) (15)

where Iy is the rolling moment about the

subscripted (x) axis. The first-order Taylor
expansion then becomes

. aL aL
= —= dp + —
p % p 2% dé (16)

assuming small perturbations and using the nota-
tion

P =Lpp + Lgs (17)
where

L= L'/I,

and the subscripts p and § denote partial deriva-
tive with respect to the subscripted variable.

Equation (17) is a simple aircraft equation

where the forcing function is provided by the
aileron and the damping by the damping-in-roll
term Lp. In subsequent sections we examine in

detail the parameter estimation problem where

Eq. (17) describes the system. For this single-

degree-of-freedom problem, the maximum likelihood
estimator is used to estimate Lp or Ls, or both,

for a given simulated time history.

We will assume that the system has measurement
noise but no state noise; therefore, we can use
Eqgs. (1) to (3). Equation (4) then gives the cost
function for maximum likelihood estimation. The

weighting (GG‘")'1 is unimportant for this problem,
so let GG* = 1. For our example,

Xi = pi (18)
zi = xj

Therefore, Eq. (4) becomes

N
ILp. L) =§i§1 [pi - BilLp. L)I2  (19)

where pi is the value of the simulated measured
response p at time ti and 51(Lp, Lg) is the esti-
mated time history of p at time ti for Lp = Ep



and Lg = fc. Throughout the rest of this paper,
where simulated data (not experimental flight
data) are used, the simulated measured time
history refers to pj, and the estimated computed
time history, which varies with each iteration,
is 51(Lp, Ls). The estimated time history is

a function of the current estimates of Lp and Lg,

but the simulated measured time history, pj,
is not.

The most straightforward method of obtaining
Pi is with Eqs. (8) and (9). Using the previously
stated notation,

Bie1 = ¢Bi + v(8f + 8j41)/2 (20)
where
¢ = exp(Lpa) (21)
v =[A exp(Lpt) dr Lg = Lell - exp(lpa)]
0 v Lp
(22)

and A is the length of the sample interval,
ti+l - tj.

The maximum likelihood estimate is obtained by
minimizing the cost function (Eq. (19)), which is
done by applying the Gauss-Newton method. Equa-
tion (12) is used to determine successive vof the
estimates of the unknowns during the minimization.

For this simple problem, £ = [[p {51*, and
successive values of [p and fa are determined by

updating Eq. (12). The first and second gradients
of Eq. (12) are defined by Eqs. (13) and (14b).

We now can write the entire procedure for

obtaining the maximum likelihood estimates for
this simple example. To start the algorithm,
initial estimates of Lp and Lg are needed

to define the value Eo. Using Eq. (12), El and

subsequently EL are defined by using the first

and second gradients of J(Lp, Lg) from Eq. (19).

The gradients for this particular example, from
Eqs. (13) and (14b), are

- N .
Ved(E) = -igl(Pi - i), fi (23)
2., N
VEJ(CL) = 1§1 (vepi)*vgpi (24)

Computational Details of Minimization

In the previous section we specified the
equations for a simple example and described the
procedure for obtaining estimates of the unknowns
from a dynamic maneuver. In this section we give

the computational details for obtaining the -esti-
mates. Some of the basic concepts of parameter
estimation are best shown with simulated measured
data, where the best (correct, in this simulated
case) answers are known. Therefore, in this sec-
tion we study two examples involving simulated
time histories. The first example is based on
data that have no measurement noise, which results
in estimates that are the same as the correct
values. The second example contains significant
measurement noise; consequently, the estimates are
not the same as the correct values.

For this simulated example, 10 points (time
samples) are used. The simulated measured data,
which we refer to as the measured data, are based
on Eq. (17). We use the same correct values
Lp = -0.2500 and Lg = 10,0 for both examples.,

In addition, the same input & is used for both
examples, the sample interval & = 0.2 sec, and
the initial conditions are zero. Tables of all
the significant intermediate values of the calcu-
lations are given in Ref. 6. In both examples,

the initial values defining £, are L, = -0.5 and
0 p
Ls = 15.0.

Example With No Measurement Noise. The simu-
lated measured time history of aileron deflection
for the case with no measurement noise (no-noise
case) is shown in Fig. 3. The aileron input
starts at zero, goes to a fixed value, and then
returns to zero. The resulting simulated measured
roll rate time history is also shown.

Table 1 gives the values for [p, f5, and J for

each iteration, along with the values of ¢ and ¥
needed for calculating fj. In three iterations

the algorithm converges to the correct values to
four significant digits for both Lp and Ls.

Figure 4 shows the match between the simulated
measured data and the estimated data for each of
the first three iterations. The match is very
close after two iterations and is nearly exact

~after three.

Although the algorithm converges to four-digit
accuracy in Lp and Lg, the value of the cost func-
tion J continues to decrease rapidly between
iterations 3 and 4. This is a consequence of
using the maximum 1ikelihood estimator on data
having no measurement noise. Theoretically, with
infinite accuracy the value of J at the minimum
should be zero. However, with finite accuracy the
value of J becomes small but never reaches zero.
This value is a function of the number of signifi-
cant digits. For the 13-digit accuracy used here,
the cost eventually decreases to approximately

0.3 x 10-28,

Example With Measurement Noise. The simulated
measured data used in the case with measurement
noise {noisy case) are the same as those used in
the previous section, except that pseudorandom
Gaussian noise is added to the roll rate (Fig. 5).
The signal-to-noise ratio is quite Tow in this
example {(compare Figs. 3 and 5). The values of

Lp, Ls, ¢, ¥, and J for each iteration are given

in Table 2. The algorithm converges in four
iterations. The behavior of the coefficients as




they approach convergence is much like that in the
no-noise case. The most notable result of this
case is that the converged values of Lp and Lg are
somewhat different from the correct values. The
match between the simulated measured and estimated
time histories is shown in Fig. 6 for each itera-
tion. No change in the match is apparent for
iterations 2 and 3. The match is very good con-
sidering the amount of measurement noise.

In Fig. 7, the time history estimated using
the no-noise estimates of Lp and Lg is compared
with that using the noisy estimates of Lp and Ls.
Because the algorithm converged to values somewhat
different from the correct values, the two esti-
mated time histories for their respective values
are similar but not identical.

The accuracy of the converged elements can be
assessed by looking at the Cramér-Rao inequal-
ity24.67 discussed previously. The Cramér-Rao
bound can be obtained from an approximation to
the information matrix H, where

-1 N

-1
H™ = 2dmin _Zl[vgzg(ti)]*(GG*)'lvgig(ti)} /(N-1)
":

The Cramér-Rao bounds for Lp and Lg are the square
roots of the diagonal elements of the H'1 matrix,

(n*\m'l(l,l) and QH'I(Z,Z), respectively. The
Gramér-Rao bounds are 0.1593 and 1.116 for Lp and

Lg, respectively. The differences between Lp and

Lp and between fa and Lg are less than their
respective bounds.

Cost Functions

In the previous section we obtained the maxi-
mum likelihood estimates for simuiated time
histories by minimizing the values of the cost
functions. To fully understand what occurs in
this minimization, we must study in more detail
the form of the cost functions and some of their
more important characteristics. In this section,
the cost function for the no-noise case is dis-
cussed briefly, The cost function for the noisy
case is then discussed in more detail. The same
two time histories studied in the previous section
are examined here. The noisy case is more inter-
esting because it has a meaningful Cramér-Rao
bound and is more representative of aircraft
flight data.

It is important to remember that in this paper
everything related to cost functions (Eq. (19)) is
based on simulated time histories that are defined
by Eq. {17). For every measured time history we
might choose (simulated or flight data), a com-
plete cost function is defined. For the case of
n variables, the cost function defines a hyper-
surface of n + 1 dimensions. We could avoid
bothering with the minimization algorithm if we
could construct this surface and look for the
minimum, but this is not a reasonable approach,
because the number of variables is generally
greater than two. Therefore, the cost function
can be described mathematically but not pictured
graphically.

One-Dimensional Case. To illustrate the many
aspects of cost functions, it is easiest to look
first at cost functions having one variable. In
an earlier section, the cost function of Lp and Lg

was minimized. That cost function is most inter-
esting in the Lp direction. Therefore, the one-

variable cost function studied here is J(Lp),
with the correct value of Lg = 10.0. Figure 8
shows the cost function plotted as a function of
Lp for the no-noise case. As expected for this

case, the minimum cost is zero and occurs at the
correct value of Lp = -0,2500, It is apparent

that the cost increases much more siowly for a
more negative Lp than for a positive Lp. In fact,

the slope'of the curve tends to become less nega-
tive where Lp < -1.0. Physically this makes sense

because the more negative values of L, represent
cases of high damping and the positive Lp repre-
sents an unstable system. Therefore, the pj for
positive Lp becomes increasingly different from
the measured time history for small positive
increments in Lp. For very large damping (very
negative Lp), the system would show essentially no
response. Therefore, further large increases in

damping result in relatively small changes in the
vatue of J(Lp).

In Fig. 9, the cost function based on the
noisy case time history is plotted as a function
of Lp. The correct Lp value (-0.2500) and the
Lp value (-0.3218) at the minimum of the cost
(3.335) are both indicated on the figure. The
general shape of the cost function in Fig. 9 is
similar to that shown in Fig. 8. Figure 10 com-
pares the cost functions based on the noisy and
no-noise cases., The comments relating to the cost
function based on the no-noise case aiso apply to
the cost function based on the noisy case. Figure
10 shows clearly that the two cost functions are
shaped similarly but shifted in both the L, and J
directions. Only a small difference in the value
of the cost would be expected far from the minimum
because the "estimated" time history is so far
from the simulated measured time history that it
becomes irrelevent as to whether the simulated
measured time history has noise added. Therefore,
for large values of cost, the difference in the

two cost functions should be small compared with
the total cost.

Figure 11 shows the gradient of J(Lp) plotted
as a function of Lp for the noisy case. Finding
the zero of this function (or equivalently, the
minimum of the cost function) using the Gauss-
Newton method was discussed previously. The
gradient is zero at Lp = -0.3218, which corre-

sponds to the value of the minimum of J(Lp).

The usefulness of the Cramér-Rac bound was
discussed in the Example With Measurement Noise
section. It is useful to digress briefly to
discuss some of the ramifications of the Cramér-
Rao bound for the one-dimensional case. The
Cramér-Rao bound has meaning only for the noisy
case. In the noisy example, the estimate of Lp

is -0.3218, and the Cramér-Rao bound is 0.0579.
The calculation of the Cramér-Rao bound was




defined in the previous section for both the
one-dimensional and the two-dimensional examples.
The Cramér-Rao bound is an estimate of the stand-
ard deviation of the estimate. The scatter in the
estimates of Lp should be of about the same magni-
tude as the estimate of the standard deviation.
For the one-dimensional case discussed here, the
range (Lp = -0.3218 plus or minus the Cramér-Rao

bound, 0.0579) nearly includes the correct value
Ly = -0.2500. If noisy cases are generated for

many time histories (adding different measurement
noise to each time history), then the sample mean
and sample standard deviation of the estimates for
these cases can be calculated. Table 3 gives the
sample mean u, sample standard deviation o, and

the standard deviation of the sample mean, o/VN,
for 5, 10, and 20 cases. The sample mean, as
expected, gets closer to the correct value of
-0.2500 as the number of cases increases. This
is also reflected in the table by the decreasing
values of o/VN, which are estimates of the error
in the sample mean. The sample standard devia-
tions indicate the approximate accuracy of the
individual estimates. This standard deviation,
which stays more or less constant, is approxi-
mately equal to the Cramér-Rao bound for the
noisy case being studied here. In fact, the
Cramér-Rao bounds of the 20 noisy cases used
here (not shown in the table) do not change much
from the values found for the particular noisy
case being studied. Both of these results are in
good agreement with the theoretical character-
istics24 of the Cramér-Rao bounds and maximum
likelihood estimators in general.

These examples indicate the value of obtaining
more sample time histories (experiments or, in an
aircraft example, dynamic maneuvers). Having more
samples improves confidence in the estimate of the
unknowns. This also holds true in analyzing actu-
al flight time histories (maneuvers); thus, it
is always advisable to obtain data from several
maneuvers at a given flight condition to improve
the best estimate of each derivative.

The magnitudes of the Cramér-Rao bounds and of
the error between the correct and estimated values
of Lp are determined largely by the length of the
time history and the amount of noise added to the
correct time history. For the case being studied,
it is apparent from Fig. 5 that a large amount of
noise is added to the time history. The effect of
the measurement noise power (GG*, Eqs. (3) and
(4)) on the estimate of Lp for the time history
is indicated in Table 4. The estimate of Lp is
much improved by decreasing the measurement noise
power. A reduction in the value of G to one-tenth
of the value in the noisy case being studied
yields an acceptable estimate of Lp. For real
data, the measurement noise is reduced by im-
proving the accuracy of the sensor outputs.

Two-Dimensional Case. In this section, the
cost function dependent on both Lp and Lg is

studied. The no-noise case is examined first,
followed by the noisy case.

Even though the cost function is a function of
only two unknowns, it is much more difficult to
visualize than is the one-dimensional case. The

cost function over reasonable ranges of L, and Lg

js shown in Fig. 12. The minimum must 1ie in the
curving valley that gets broader toward the far
side of the surface. The cost increases very
rapidly in the region of positive Lp and large
values of Lg. The reason for this rapid increase
is just an extension of the argument for positive
Lp, given in the previous section. With this pic-
ture of the surface, we can look at the isoclines
of constant cost on the Ly-Lg plane (Fig. 13).

The minimum of the cost function is inside the
closed isocline., The steepness of the cost func-
tion in the positive Lp direction is once again

apparent. The more nearly elliptical shape inside
the closed isocline indicates that the cost is
nearly quadratic there, so fairly rapid conver-
gence inh this region would be expected. The Lp

axis becomes an asymptote for cost as Lg approaches
zero. The cost is constant for Lg = O because
no response would result from any aileron input;

the estimated response is zero for all values of
Lps resulting in constant cost.

The region of the minimum value of the
cost function (Fig. 13), as seen in the earlier
example (Table 1), occurs at the correct values
Lp = -0.2500 and Lg = 10.0. This is also evident

by looking at the cost function surface shown in
Fig. 14, The surface has its minimum at the cor-
rect value. As expected, the value of the cost
function at the minimum is zero.

As in the one-dimensional case, the primary
difference between the cost functions for the no-
noise and noisy cases is a shift in the cost func-
tion. In the one-dimensional case, the cost
function for the noisy case was shifted so that
the minimum was at a higher cost and a more nega-
tive value of Lp. In the two-dimensional case,

the cost function exhibits a similar shift in
both the Lp and the Lg directions. The shift is

small enough that the difference is not visible at
the scale shown in Fig. 12, Figure 15 shows the
isoclines of constant cost for the noisy case,
which 1ook much 1ike the isoclines for the no-
noise case shown in Fig. 13; the difference is

a shift in Lp of about 0.1, the difference at

the minimum for the no-noise and noisy cases.
Heuristically, one can see that this would hold
true for cases with more than two unknowns; the
primary difference between the two cost functions
is near the minimum.

The next step is to examine the cost function
near the minimum. Figure 16 shows the same view
of the cost function for the noisy case as shown
in Fig. 14 for the no-noise case. The shape is
roughly the same as that shown in Fig. 14, but
the surface is shifted such that its minimum lies
over Lp = -0,3540 and Lg = 10.24, and it is
shifted upward to a cost function value of approx-
imately 3.3.

To get a more precise idea of the cost func-
tion of the noisy case near the minimum, we must
once again examine the isoclines. The isoclines
in this region (Fig. 17) are much more like ellip-
ses than those in Figs. 13 and 15. The results
from Table 2 are included on Fig. 17, so we can



follow the path of the minimization example used
before. The first iteration (L = 1) brought the
values of L, and Lg very close to the values at
the minimum, and the second essentially arrived at
the minimum (viewed at this scale). One of the
reasons the convergence is so rapid in this region
is that the isoclines are nearly elliptical, dem-
onstrating that the cost function is very nearly
quadratic in this region. If we had started the
Gauss-Newton algorithm at a point where the iso-
clines are much less elliptical (as in some of the
border reyions in Fig. 15), the convergence would
have progressed more siowly initially, but it
would have progressed at much the same rate as it
entered the nearly quadratic region of the cost
function.

Before concluding our examination of the two-
dimensional case, we shall examine the Cramér-Rao
bound. Figure 18 shows the uncertainty ellipsoid,
which is based on the Cramér-Rao bound. (The
relationships between the Cramér-Rao bound and the
uncertainty ellipsoid are discussed in Ref. 69.)
The uncertainty ellipsoid almost encloses the
correct values of Lp and Lg. The Cramér-Raq bound
for Lp and Lg can be determined from the projec-
tion of the uncertainty ellipsoid onto the Lp and
Ls axes and then compared with the values calcu-
lated for the noisy case, which were 0,1593 and
1.116 for Lp and Lg, respectively. This projec-
tion is analogous to the case for n unknowns, but
in that case the projection would be the n + 1
hyperellipsoid's projection onto a hypersurface.

Estimation Using Flight Data

We have examined the basic mechanics of
ohtaining maximum likelihood estimates from sim-
ulated examples with one or two unknown param-
eters. To make the transition from theory to
practical application, we present results obtained
from analysis of actual flight data and discuss
how the aircraft parameter estimation results are
used to solve real problems. In this case we
illustrate the necessity of obtaining estimates of
the aircraft coefficients of the differential
equaltions of motion (the stability and control
derivatives) to solve important and related prob-
lems encountered in flight. However, the aircraft
stahbility and control example is only one of sev-
eral applications of parameter estimation tech-
niques; useful results can be obtained in many
applications where the phenomenology is well
understood. For the computationally difficult
situation usually encountered with actual flight
data, we obtain the maximum 1likelihood estimates
with the 11iff-Maine code (MMLE3 program).67
Before studying the specific examples, a brief
historical review of some other uses of the esti-
mates is presented.

In the past, the primary reason for estimating
stability and control derivatives from flight
tests was to make comparisons with wind tunnel
estimates. As aircraft became more complex and as
flight envelopes were expanded to include flight
regimes that were not well understood, new re-
quirements of the derivative estimates evolved.
For many years, the flight-determined derivatives
were used in simulations to aid in flight planning
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and in pilot training. The simulations were par-
ticularly important in research flight test pro-
grams in which an expansion of the envelope into
new flight regimes was required. As more was
learned about these new flight regimes, the com-
plexity of the aircraft, and particularly their
sophisticated flight control systems, increased.
The design and refinement of the control system
for these complex aircraft required higher fidel-
ity simulations. As a consequence, a more com-
plete knowledge of the flight-determined stability
and control derivatives was necessary. Almost
all current high-performance aircraft have very
complex control systems to compensate for their
deficiencies in basic aerodynamic characteristics.
Consequently, most flight test programs for these
aircraft require a complete flight-determined

set of stability and control derivatives, and
parameter estimation techniques for estimating
stability and control derivatives from flight
data have become more sophisticated.

At the Dryden Flight Research Facility of
NASA's Ames Research Center (Ames-Dryden), ana-
lysts have been involved in the estimation of sta-
bility and control derivatives with maximum like-
lihood estimators since 1966 and have success-
fully applied maximum 1ikelihood estimators to
nearly 50 different aircraft configurations. Some
of the experience gained through these applica-
tions is included in the bibliography of Ref. 9.
Recent Ames-Dryden applications have concentrated
on estimating stability and control derivatives
to assist in designing or refining control Sys-
tems. Three such applications (to be discussed in
detail) are the F-14, highly maneuverable aircraft
technology (HiMAT), and space shuttle programs.
A1l three of these programs have made extensive
use of high-fidelity, pilot-in-the-loop simula-
tions, which are implemented using the best wind
tunnel data available. Portions of these flight
test programs were defined to obtain data for
refining simulator models.

The chosen method of enhancing the simulator
model depends on the aircraft involved in the
flight test program. The F-14 aircraft flew sev-
eral flights specifically for defining the sta-
bility and control derivatives over a large angle-
of-attack range because the necessary control
refinement related to the high-angle-of-attack
regime. The HiMAT vehicle flew several flights
with a positive static margin (stable open-1oop
system) so that derivatives could be obtained to
design a control system for flight at a negative
static margin (unstable. open-loop system). The
space shuttle entered from space on the most con-
servative trajectory to allow assessment of its
characteristics before an envelope expansion
was begun.

Once the flight data are obtained and ana-
lyzed, the simulator is updated to assist in con-
trol system design and further flight planning.
Where flight results agree with wind tunnel pre-
dictions, confidence in the simulation grows, and
envelope expansion proceeds more efficiently.

The coefficients evaluated in this section
are contained in the aircraft equations of motion,
which are derived and discussed in detail in
Ref. 6.



F-14 Aircraft

The F-14 aircraft is a twin-engine, high-
performance fighter with variable wing sweep
(Fig. 19). The Ames-Dryden F-14 program was
intended to improve the handling qualities of the
airplane at high angles of attack by incorporating
several control system techniques.’0.71 The first
part of the program was dedicated to obtaining
flight-determined stability and control deriva-
tives for the subsonic envelope of the F-14 air-
craft, the complete trimmed angle-of-attack range
for Mach number M < 0.9.

In many instances the flight data agreed
with the wind tunnel predictions; Fig. 20 (from
Ref. 70) shows the comparison of CnB (Ch being the

coefficient of yawing moment) as a function of
angle of attack a from flight and wind tunnel
estimates. (Througout this and following dis-
cussions, a subscript to the coefficient denotes
partial derivative with respect to the subscripted
variable.) The symbols denote the estimate, and
the vertical bar designates the uncertainty level
(Cramér-Rao bound). The agreement is good,
although there is some disagreement at a > 25°;
nevertheless, the same trends are seen for both
flight and wind tunnel data.

Figure 21 shows the flight-determined CE
p

(CL being the coefficient of rolling moment)

as a function of a for M < 0,55 and for M = 0.9,
There was some uncertainty in the accuracy of the
wind tunnel predictions of Clp hecause the wind

tunnel model configuration was different from the
flight configuration. The implementation of
C"p at M = 0.9 in the simulation produced a pre-

viously unsimulated wing rock characteristic that
had been observed in flight. The wing rock had
been a troublesome characteristic, and its simula-
tion was important in improving handling qualities
through control system modifications. Figure 22
shows the flight-determined values of C,‘8 as a

function of a compared with the results of two
different sets of wind tunnel results. There had
been some concern about the disagreement between
the two sets of wind tunnel results before flight.
At low angles of attack, the three sets of esti-
mates are in fair agreement; however, at a > 15°,
the flight data lie between the two sets of wind
tunnel data.

A last example from the F-14 aircraft shows
how the wind tunnel and flight estimates inter-
play to improve a simulation. After the lateral-
directional derivatives were incorporated in the
simulation, the resulting simulated lateral-
directional motions from a longitudinal-stick snap
maneuver were found to be inconsistent with the
flight response. Since the F-14 program was pri-
marily a lateral-directional investigation, the
longitudinal derivatives in the simulation had not
been updated with the flight-determined values.
When the flight-determined longitudinal deriva-
tives were included in the simulation, the stick
snap response agreed more closely with the flight
response. In tracking down the inconsistency, a
large discrepancy was discovered between the wind

11

tunnel and flight-determined values of Cng (Cm

being the coefficient of pitching moment). This
is shown in Fig. 23, where flight-determined

Cm, 15 compared with the wind tunnel estimates
of Cpy for the untrimmed and trimmed conditions.

Further investigation showed that the untrimmed
values of Cma had been put in the simulation and

that the predicted trimmed values of Cmg were in
excellent agreement with flight estimates.

Examples using Czp’ C‘B’ and Cm°l show how

flight data, in addition to providing a primary
source of estimates, can be used to help interpret
wind tunnel data; these data can then be used to
improve the simulation at points away from steady-
state flight data. Sometimes wind tunnel data are
available but have been discounted or overlooked,
and flight data can give new credence to these
wind tunnel data.

These F-14 flight data improved the simula-
tion over a large part of the envelope. Since the
F-14 high-angle-of-attack program also needed to
examine responses of a highly transient nature,
more tedious and time-consuming fine tuning of the
simulation was required for flight at other than
near the trimmed conditions.’2 With the resulting
simulation, the proposed control system techniques
were further refined; the result was a more effi-
cient demonstration in flight.

This exemplifies the value of flight test
parameter estimation in improving the handling
qualities of an aircraft through control system
improvements.

HiMAT Vehicle

The HiMAT vehicle is a remotely piloted
research vehicle with advanced close-coupled
canards, wing-type winglets, and provisions for
variable leading-edge camber. It is made of
advanced composite materials to allow for aero-
elastic tailoring and to minimize weight. It
was flown in an unstable configuration because
the wing deformation then resulted in a desirable
camber shape at high load factor and because the
trim drag was reduced.

The HiMAT vehicle’3,74 (Fig. 24) was designed
to fly with a sustained 8-g turn capability at
Mach 0.9 at 25,000 ft altitude and to demonstrate
flight supersonically to Mach 1.4. To attain the
Mach 0.9 condition, it was predicted that the
vehicle must be flown in an unstable configuration
(10-percent mean aerodynamic cord (MAC) negative
static margin). The philosophy for testing the
HiMAT vehicle was somewhat different from that for
production aircraft: Flight-determined stability
and control derivatives were to be relied on to
keep the wind tunnel program to a minimum. The
original simulation data base contained the wind
tunnel data supplemented with some computed
characteristics.

The vehicle was flown in a stable config-

uration to obtain stability and control deriva-
tives with the control feedbacks set to zero.
While these data were being gathered, a control



system suitable for unstable flight was being
designed, based on wind tunnel tests. Then, with
the flight-determined derivatives, the simulator
was updated and the control system adjusted for
this update so that the unstable vehicle could be
flown safely. Stability and control maneuvers
were performed at subsonic and supersonic Mach
numbers, at angles of attack up to 10°, and at
altitudes from 15,000 to 45,000 ft. A complete
set of stahility and control characteristics was
obtained for both the longitudinal and lateral-
directional degrees of freedom.’5 Because the
values of the HiMAT derivatives are classified,
the data are plotted on unlabeled vertical axes;
nevertheless, an assessment of predicted and
flight-determined derivatives can still be made.
A1l the derivatives, predicted and flight deter-
mined, are corrected to O-percent MAC. For the
flight conditions flown, there were no aeroelastic
effects noted in the flight data.

Figure 25 shows flight-determined directional
dynamic stability C"den as a function of Mach

number at a = 4° compared with the rigid and flex-
ible predictions. Flight estimates are about the
same as predictions at M = 0.4 and 0.9, but they
differ significantly in between. In Fig. 26,
C"den is plotted as a function of «a at M = 0.9,

showing that the vehicle is slightly unstable in
the lateral-directional axes at the lower angles
of attack. Considering that these data are
plotted for U-percent MAC, this instability would
be considerably greater and over a wider angle-of-
attack range if the center of gravity were moved
significantly aft (aft movement of the center of
gravity makes any vehicle less stable). The de-
rivatives CvB (Cy being the coefficient of side-

force) and C,lp agreed with predictions; however,

Cn,. was twice the predicted value, Cnp was of
opposite sign, and Cﬂr was a small fraction of

predictions. The rolling moments due to aileron,
C,.6 , agreed fairly well with the rigid predic-
DE

tions; c“ér was 25-percent less than predicted;
both and C showed a positive increment
oth Cng, and Cngpe P

over prediction. The derivative C26 was about
r

twice the predicted value. Since there were so
many large differences between the flight-
determined derivatives and the minimal wind tunnel
set, it was decided to completely reevaluate the
lateral-directional control laws designed for the
unstable configuration using the flight data
instead of the wind tunnel data, which were used
in the original design. Some reasons for this can
be seen in Fig. 27, in which the control deriva-
tives C"5DE’ ngr, and C"sr are plotted as func-

tions of a at M = 0.9. These differences between
flight and predicted values meant that the simu-
lator had to be extensively revised.

The HiMAT vehicle program was a technology
demonstration program and therefore was required
to demonstrate the technology only at specific
design points. A technology demonstration is
quite different from many programs, such as the
F-14 program, because only certain steady-state
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requirements must be demonstrated. Therefore, all
the points (or flight conditions) that needed to
be flown were near steady-state points for which
flight-demonstrated derivatives already existed.
To update the simulator, all the predicted data
were disregarded, and only flight-determined sta-
bility and control derivatives were used. The
knowledge that the aircraft stability and control
derivatives exhibited no significant aeroelastic
effects permitted the reevaluation of the unstable
control system, and the design was simplified.

The control laws designed for the unstable
configuration were much more complex than the
rate-feedback system used for gathering stability
and control derivatives. The new control laws
were modified by (1) adding a lateral acceleration
ay feedback to improve closed-loop directional
dynamic stability; (2) adding an interconnect
between lateral stick and rudder to improve
Tateral control characteristics; (3) changing
the various feedback gains to improve damping
characteristics; and (4) locking the aileron
surface to eliminate adverse yaw and also to
eliminate the possibility of a predicted surface-
buzz problem at higher Mach numbers. This design
of the lateral-directional control system was the
result of an extensive study of possible control
systems using both the simulator and the linear
analysis techniques. When the new control system
was designed, it was implemented on the HiMAT
vehicle, and it was flown in a stable configura-
tion. Control surface doublets were input, and
the responses were compared with the simulator-
derived responses. The comparison was excellent,
giving confidence that the unstable vehicle could
be tested.

The benefits of flying the unstable vehicle
were demonstrated in flight when a 0.4-g improve-
ment in sustained-g capability was realized by
changing the center-of-gravity location from the
point of neutral stability to 5-percent MAC aft of
the neutral point. When the unstable vehicle was
flown with a 5-percent MAC negative static margin,
a sustained turn of about 7.8 g was achieved.
Based on these numbers, the HiMAT vehicle should
be able to demonstrate a sustained 8.0-g turn
capability with the 10-percent MAC negative static
margin (unstable vehicle).

In the case of the HiMAT vehicle, flight test

parameter estimation became the sole method of
defining the stability and control derivatives.
A control system design for the unstable config=-
uration was defined from flight test results.
The adequacy of the design was demonstrated on
the simulation updated with flight data. The
resulting control system enabled the unstable
vehicle to be flown.

A recent investigation of determining the
aerodynamic coefficients for the highly unstable
X-29A vehicle is described in Ref. 69. This
investigation sheds new 1ight on parameter estima-
tion of unstable systems, which has widespread
application to systems other than those defined
by stability and control derivatives.

Space Shuttle Orbiter

The space shuttle orbiter is a large double-
delta-winged vehicle designed to enter the atmos-



phere and land horizontally. The entry control
system consists of 12 vertical reaction control
system (RCS) jets (6 up-firing and 6 down-firing)
and 8 horizontal RCS jets (4 left-firing and

4 right-firing), 4 elevon surfaces, a body flap,
and a split rudder surface (Fig. 28). The ver-
tical jets and the elevons are used for both pitch
and roll control. The jets and elevons are used
symmetrically for pitch control and asymmetric-
ally for roll control. More information on the
configuration and flight plan is given in Ref, 76,

The F-14 and HiMAT examples showed how param-
eter estimation can be used in an incremental
flight test program, that is, a progressive expan-
sion of the flight envelope to obtain data in the
more certain areas first and in the more chal-
lenging or hazardous ones later. However, the
space shuttie program could not be approached in
this manner, for the vehicle had to demonstrate on
the first flight that it could be flown safely
over most of its envelope. Further complicating
the proyram, this first flight included very
hazardous flight regimes. The subsonic flight and
landiny characteristics had been demonstrated in
the earlier approach and landing test program,
but the hypersonic, peak heating, and transonic
regions were largely unexplored for a vehicle of
this type.

Extensive wind tunnel tests were performed,
and those data were incorporated into high-
fidelity simulations. No matter how carefully
wind tunnel tests are performed, there are fre-
quently discrepancies between the predictions and
the demonstrated flight characteristics; there-
fore, uncertainties were defined for each stabil-
ity and control derivative. These uncertainties
(called variations in Ref. 77) were based to a
large extent on previously reported discrepancies

between predictions and f]ight.78

In preparation for the first flight, a con-
trol system was developed to provide satisfactory
closed-loop vehicle characteristics for deriva-
tives that fell between the variations that had
heen previously defined. After flight data were
obtained, the flight estimates of the stability
and control derivatives were used to reduce the
preflight variations. This reduction then allowed
the control engineers to refine the control system
and therefore to improve the shuttle handling
qualities. In addition, the flight-determined
derivatives were used to determine if configura-
tion placards (limitations on the flight envelope)
could be modified or removed.

Some of the stability and control resuits
obtained from the first three flights are con-
tained in Refs. 79 and 80. One interesting
example of where parameter estimation played an
important role in the shuttle program occurred
during the first energy-management bank maneuver
on the first entry of the shuttle (STS-1). The
response to the automated control inputs computed
using the predicted stability and control deriva-
tives is shown in Fig. 29. It should be noted
that the control inputs shown here (and for all
other simulation comparisons) are the closed-
loop commands from the shuttle control laws.

The maneuver was to be made at a velocity
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V = 24,300 ft/sec and at a dynamic pressure

g ~ 12 1b/ft2,

The actual STS-1 maneuver that occurred at
this flight condition is shown in Fig. 30, which
depicts a more hazardous maneuver than was pre-
dicted. At this flight condition the excursions
must be kept small. The flight maneuver resulted
in twice the angle-of-sideslip B peaks predicted
and in a somewhat higher roll rate than predicted.
Also, there was more yaw-jet firing than was pre-
dicted, and the motion was more poorly damped than
predicted. It is obvious from comparing the pre-
dicted with the actual maneuver (Fig. 31) that the
stability and control derivatives were signifi-
cantly different than predicted. It is fortunate
that the control system design philosophy dis-
cussed previously had been used for the shuttle.
Although the flight maneuver resulted in excur-
sions greater than planned, the control system
did manage to damp out the oscillation in less
than 1 min. With a less conservative design
approach, the resulting entry maneuver couid
have been a good deal worse.

To assess the problem with the first bank
maneuver, the flight-determined stability and
control derivatives were compared with the pre-
dictions. Of all the derivatives obtained from
STS-1, the two important ones that differed most
from the predictions at the flight condition being
discussed were clB and the rolling moment due to

yaw jet firing, Lyjg. Since the entry tends to
monotonically decrease in Mach number, the deriva-
tives can be best portrayed as functions of the
guidance system "Mach number," which is V/1000.
Figure 32 shows C,‘B as a function of guidance Mach

number, and Fig. 33 shows Lyj as a function of

guidance Mach number. Only the estimates from
STS-1 are shown in these figures.

When only the change in C28 was entered into

the simulation data base, the maneuver looked
very much like the original prediction (Fig. 29);
however, as expected, the frequency of the oscil-
lations changed to be more representative of the
actual flight frequencies (Fig. 30). The effect
on the simulation of changing only Lyj from the
predictions is shown, with the flight response, in
Fig. 34. These two time histories are very close,
considering that the other differences between
the flight-determined and predicted derivatives
have been ignored.

It is apparent that the primary problem with
the initial bank maneuver was the poor prediction
of Lyj. The control system Software is very
complex, and it cannot be changed and verified
between shuttle missions; therefore, an interim

- approach was taken to keep this large excursion

from occurring on future flights. The flight-
determined derivatives were put into the simula-
tion data base, and the shuttle pilots practiced
performing the maneuver manually, trying to attain
a smaller response within more desirable limits.
The maneuver was performed manually on STS-2 to
STS-4. Figure 35 shows the manually flown maneu-



ver from STS-2. For this maneuver, roll rate,
yaw rate, and sideslip angle were within the
desired limits. The maneuver does not look like
the original predicted response, because the de-
rivatives and the input were different and the
basic control system remained unchanged. Since
the response variables were kept low and the inputs
were slower and smaller, the flight responses on
STS-2 to STS-4 did not show a tendency to oscil-
late. The software was updated for STS-5, and
the resulting automated maneuver is essentially
Indistinguishable from that shown in Fig, 35.
This maneuver has been used on all subsequent
shuttle flights,

The application of parameter estimation tech-
niques to the highly complex space shuttle vehicle
will continue, and the results of this application
have and will significantly affect the control
system design, placard modification, and flight
procedures in general.

Concluding Remarks

In this paper, the aircraft parameter estima-
tion problem is used as an example of how param-
eter estimation can be applied in many scientific
and engineering fields to assess phenomenology
from observations, and a brief survey of the
literature is presented. The theory, a simple
simulated example, and the application of experi-
mental results to solve real problems are given
and explained. The maximum Tikelihood parameter
estimation technique was used in the F-14 program
to effect control system changes that improved
handling qualities at high angles of attack.
same technique provided the primary source of
information for control system refinement on the
unstable HiMAT vehicle. Space shuttle energy-
management maneuvers have been redefined based on
simulations using flight-determined stability and
control estimates. Moreover, parameter estima-
tion techniques are being relied upon for future
control system design, placard modification or
removal, and flight procedures in general for
the space shuttle.

The

The explanation of parameter estimation tech-
niques and the demonstration of their highly suc-
cessful application to the aircraft problems are
intended to inform and to encourage scientists in
other fields to consider these techniques for
application to problems where a representative
model and high-quality data exist.

References

1[1iff, Kenneth W., and Maine, Richard E.,

“NASA Dryden's Experience in Parameter Estimation
and Its Use in Flight Test," AIAA-82-1373, AIAA
AFM Conference, San Diego, California, Aug. 1982.

2119ff, Kenneth W., and Maine, Richard E.,

"More Than You May Vant to Know About Maximum
Likelihood Estimation," NASA TM-85905, 1985.

3zadeh, Lotfi A., and Desoer, Charles A.,

Linear System Theory, McGraw-Hill Book Co., New
York, 19§3.

14

4Schweppe. Fred C., Uncertain Dynamic Systems,
Prentice-Hall, Englewood C1iffs, New Jersey, 1973.

SMaine, Richard E., and I1iff, Kenneth W.,
"Identification of Dynamic Systems," AGARD-AG-300,
1984. (Also published as NASA RP-1138, 1985.)

6Maine, Richard E., and I1iff, Kenneth W.,
“Application of Parameter Estimation to Air-
craft Stability and Control — The Output-Error
Approach," NASA RP-1168, 1986.

"Norton, F.H., "The Measurement of the Damping
in Roll on a JN4h in Flight," NACA Rep. 167, 1923.

8Norton, F.H., "A Study of Longitudinal
Dynamic Stability in Flight," NACA Rep. 170,
1923.

911iff, Kenneth W., and Maine, Richard E., “A

Bibliography for Aircaft Parameter Estimation,"
NASA TM-86804, 1986.

10Gauss, Karl Friedrich, Theory of the Motion
of the Heavenly Bodies Moving About the Sun in
Conic Sections {transTated by Charles Henry
Davis, 1857), Dover Publications, Inc., New York,
1847. (Translated from Theoria Motus, 1809.)

11pouglas, J., "Theorems in the Inverse
Problem in the Calculus of Variations," Proc.
Natl. Acad. Sci., vol. 16, no. 3., 1940.

12Ge1fand, I.M., and Levitan, B.M., "On the
Determination of a Differential Equation From Its
Spectral Function," Izvestiya Ac., vol. 15, no. 4,
Nauk, USSR, 1951.

13reldbaum, A.A., "Dual Control Theory,"
Automn. Remote Control, vol. 22, 1961, pp. 1-12
and 109-121,

14Cuenod, M., and Sage, A., “"Comparison of
Some Methods Used for Process Identification,"
Automatica, vol. 4, 1968, pp. 235-269.

158alakrishnan, A.V., and Peterka, V.,

“Identification in Automatic Control Systems,"
Automatica, vol. 5, 1969, pp. 817-829,

]
16Astrom, K.J., and Eykhoff, P., "System

Identification — A Survey," Automatica, vol. 7,
no. 2, 1971, pp. 123-162.

17Eykhoff, Pieter, System Identification,
Parameter and State Estimation, John Wiley & Sons,
London, 1977,

-]
18strém, Karl J., “"Control Problems in
Papermaking," Proc. IBM Scientific Computing
Symposium on Control Theory and Applications, IBM
Data Processing Division, White Plains, New York,
1966, pp. 135-167.

19ashyap, R.L., "A New Method of Recursive
Estimation in Discrete Linear Systems," IEEE
Trans. Automatic Control, vol. AC-15, no. 1,
Feb. 1970, pp. 18-24.



20galakrishnan, A.V., “Stochastic System
Identification Techniques," Stochastic
Optimization and Control, H.F. Karreman, ed.,
John Wiley & Sons, London, 1968.

21Ba1akrishnan, A.V., "Stochastic Differen-
tial System 1," Filtering and Control; A Func-
tion Space Approach, M. Beckman, G. Goos, and
H.P. Kunzi, eds., Springer-Verlag, Berlin, 1973.
(Lecture Notes in Economics and Mathematical
Systems, vol. 84,)

228a)akrishnan, A.V., “Modelling and lden-
tification Theory: A Flight Control Applica-
tion," Theory and Applications of Variable
Structure Systems, R.B. Mohler and A. Ruberti,
eds., Academic Press, New York, 1972.

23119 ff, Kenneth W., "Identification and

Stochastic Control With Application to Flight
Control in Turbulence," Ph.D. Dissertation, Univ.
of California, Los Angeles, May 1973.

2%aine, Richard E., and I1iff, Kenneth W.,
"The Theory and Practice of Estimating the
Accuracy of Dynamic Flight-Determined Coef-
ficients," NASA RP-1077, 1981.

25"parameter Estimation Techniques and
Applications in Aircraft Flight Testing," NASA
TN D-7647, 1974,

2b"Methods for Aircraft State and Parameter
Identification," AGARD-CP-172, May 1975.

278reuhaus, W.0., "Summary of Dynamic
Stability and Control Flight Research Conducted
Utilizing a B-25J Airplane," Rep. no. TB-405-F-10,
Cornell Aeronautical Laboratory, Buffalo, New
York, May 1948.

28Seamans, R.C., Jr., Blasingame, B.P., and
Ciementson, G.C., "The Pulse Method for the
Determination of Aircraft Dynamic Performance,"
J. Aeronaut. Sci., vol. 17, no. 1, Jan. 1950,
pp. 22-38.

2%reenberg, Harry, “A Survey of Methods for

Determining Stability Parameters of an Airplane.
From Dynamic Flight Measurements," NACA TN-2340,

1951.

30Shinbrot, Marvin, "On the Analysis of Linear

and Nonlinear Dynamical Systems From Transient-
Response Data,"” NACA TN-3288, 1954.

3lHoward, J., “"The Determination of Lateral
Stability and Control Derivatives From Flight
Data," Can. Aeronautics Space J., vol. 13, no. 3,
Mar. 1967, pp. 126-134,

32Wolowicz, Chester H., "Considerations in the

Determination of Stability and Control Derivatives
and Dynamic Characteristics From Flight Data,"
AGARD-AR-549, Part 1, 1966.

15

33Rampy. John M., and Berry, Donald T.,
"Determination of Stability Derivatives From
Flight Test Data by Means of High Speed Repetitive
Operation Analog Matching," FTC-TDR-64-8, Edwards,
California, May 1964.

34%ynaski, Edmund G., "Application of Advanced
Identification Techniques to Nonlinear Equations
of Motion," Proc. Stall/Post-Stall/Spin Symposium,
Wright-Patterson Air Force Base, Ohio, Dec. 15-17,
1971, pp. 0-1 to 0-18.

35Iliff, Kenneth W., and Taylor, Lawrence W.,
Jr., "Determination of Stability Derivatives from
Flight Data Using a Newton-Raphson Minimization
Technique," NASA TN D-6579, 1972.

36Taylor, Lawrence W., Jr., and ITiff, Kenneth
W., "A Modified Newton-Raphson Method for Deter-
mining Stability Derivatives From Flight Data,"
Second International Conference on Computing
Methods in Optimization Problems, San Remo, Italy,
Sept. 9-13, 1968, Academic Press, New York, 1969,
pp. 353-364.

37Larson, Duane B., and Fleck, John T.,
"Identification of Parameters by the Method of
Quasilinearization," Report 164, Cornell Aero-
nautical Laboratory, Buffalo, New York, May 1968,

38alakrishnan, A.V., Communication Theory,
McGraw-Hi1l, New York, 1968.

39ellman, Richard E., and Kalaba, Robert E.,
Quasilinearization and Nonlinear Boundary-Value

ProbTems, American Elsevier Publishing Co., New

York, 1965.

40Tay1or,'Lawrence W., Jr., I1iff, Kenneth W.,
and Powers, Bruce, G., "A Comparison of Newton- -
Raphson and Other Methods for Determining Sta-
bility Derivatives From Flight Data," AIAA-69-315,
Mar. 1969.

41Grove, Randall D., Bowles, Roland L., and
Mayhew, Stanley C., "A Procedure for Estimating
Stability and Control Parameters From Flight Test
Data by Using Maximum Likelihood Methods Employing
a Real-Time Digital System," NASA TN D-6735, 1972.

42Ross, A. Jean, and Foster, G.W., "FORTRAN
Programs for the Determination of Aerodynamic
Derivatives From Transient Longitudinal or Lateral
Responses of Aircraft," TR-75090, Royal Aircraft
Establishment, Sept. 1975.

43Maine, Richard E., and I1iff, Kenneth W., "A
FORTRAN Program for Determining Aircraft Stability
and Control Derivatives From Flight Data," NASA TN
D-7831, 1975.

44Nagy, Christopher J., "A New Method for Test
and Analysis of Dynamic Stability and Control,”
AFFTC-TD-75-4, Air Force Flight Test Center,
Edwards, California, May 1976.



4511iff, Kenneth W., Maine, Richard E., and
Shafer, Mary F., "Subsonic Stability and Control
Derivatives for an Unpowered, Remotely Piloted
3/8-scale F-15 Airplane Model Obtained From Flight
Test," NASA TN D-8136, 1976.

46sim, Alex G., "A Correlation Between Flight-
Determined Derivatives and Wind-Tunnel Data for
the X-24B Research Aircraft," NASA SX-3371, 1976.

479eglum, Paul M., "AFFTC Experience in the
Use of Flight-Test Derived Stability Derivatives,"
Paper 14, AGARD Fiuid Dynamics Panel Symposium on
Dynamic Stability Parameters, Athens, Greece,
May 22-24, 1978.

48Hot1eman, Euclid C., "Summary of Flight
Tests to Determine the Spin and Controllability
Characteristics of a Rermotely Piloted, Large-Scale
(3/8) Fighter Airplane Model," NASA TN D-8052,
1976.

49%mith, Harriet J., "Flight-Determined

Stability and Control Derivatives for an Execu-
tive Jet Transport," NASA TM X-56034, 1975,

50syit, William T., "Aerodynamic Parameters of

the Navion Airplane Extracted From Flight Data,"
NASA TN D-6643, 1972.

5lFrei, D.R., "Practical Applications of
Parameter Identification," AIAA-77-1136, Aug.
1977.

52Ross, A. Jean, “Determination of Aerodynamic
Derivatives From Transient Response in Manoeuvring
Flight," Methods for Aircraft State and Parameter
Identification, AGARD-CP-172, May 1975, pp. 14-1
to 14-10.

536ould, D.G., and Hindson, W.S., "Estimates
of the Stability Derivatives of a Helicopter and
a V/STOL Aircraft From Flight Data," Methods for
Aircraft State and Parameter Identification,
AGARD-CP-172, May 1975, pp. 23-1 to 23-9,

S41ein, V., "Longitudinal Aerodynamic Deriva-
tives of a Slender Delta-Wing Research Aircraft
Extracted From Flight Data," CIT-FI-74-023,
Cranfield Inst. of Technology, July 1974,

55Schuetz, A.J., "Low Angle-of-Attack
Longitudinal Aerodynamic Parameters of Navy T-2
Trainer Aircraft Extracted From Flight Data: A
Comparison of Identification Technique. Volume I
~ Data Acquisition and Modified Newton-Raphson
Analysis," NADC-74181-30-VOL-1 AD-A013181, Naval
Air Development Center, Warminster, Pennsylvania,
June 1975,

56Marchand, M., and Koehler, R., "Determina-
tion of Aircraft Derivatives by Automatic Param-
eter Adjustment and Frequency Response Methods,"
Methods for Aircraft State and Parameter Ident-
ification, AGARD-CP-172, May 1975, pp. 17-1 to
17-18.

57"Dynamic Stability Parameters," AGARD-
CP-235, 1978,

16

584parameter Identification," AGARD-LS-104,
1979,

59Mehra, Raman K., "Maximum Likelihood Iden-
tification of Aircraft Parameters," Eleventh
Joint Automatic Control Conference of the American
Automatic Control Council, Paper 18-C, June 1970,
pp. 442-444,

50Tyler, James S., Powell, J. David, and
Mehra, Raman K., "The Use of Smoothing and Other
Advanced Techniques for VTOL Aircraft Parameter
Identification. Final Report," Naval Air Systems
Command Contract No. N00019-69-C-0534, Systems
Control, Inc., Palo Alto, California, June 1970.

61Gertach, 0.H., "The Determination of Sta-
bility Derivatives and Performance Character-
istics From Dynamic Manoeuvres," Rep. VTH-163,
Delft Univ. of Technology, Dept. of Aerospace
Engineering, Delft, The Netherlands, Mar. 1971.

62jonkers, H.L., "Application of the Kalman
Filter to Flight Path Reconstruction From Flight
Test Data Including Estimation of Instrumental
Bias Error Corrections," Report VTH-162, Delft
Univ. of Technology, Dept. of Aerospace Engi-
neering, Delft, The Netherlands, Feb. 1976.

63Chen, Robert T.N., and Eulrich, Bernard J.,
"Parameter and Model Identification of Nonlinear
Dynamical Systems Using a Suboptimal Fixed-Point
Smoothing Algorithm," Twelfth Joint Automatic
Control Conference of the American Automatic
Control Council, Paper 7-E2, Aug. 1971,
pp. 731-740.

64vazawa, Kenji, "Identification of Aircraft
Stability and Control Derivatives in the Presence
of Turbulence," AIAA-77-1134, Aug. 1977.

65119 ff, Kenneth W., and Maine, Richard E.,
“Practical Aspects of Using a Maximum Likelihood
Estimator," Methods for Aircraft State and
Parameter Identification, AGARD-CP-172, Paper 16,
May 1975, pp. 16-1 to 16-15.

66119 ff, Kenneth W., and Maine, Richard E.,
"Further Observations on Maximum Likelihood
Estimates of Stability and Control Character-
istics Obtained From Flight Data," AIAA-77-1133,
Aug. 1977.

67Maine, Richard E., and I1ff, Kenneth W.,
"User's Manual for MMLE3, A General FORTRAN
Program for Maximum Likelihood Parameter
Estimation," NASA TP-1563, 1980,

68¥aine, Richard E., and I1iff, Kenneth W.,
"Formulation and Implementation of a Practical
Algorithm for Parameter Estimation With Process
and Measurement Noise," SIAM J. Appl. Math.,
vol. 41, no. 3, Dec. 1981, pp. 558-579.

69%aine, Richard E., and Murray, James E.,
“Application of Parameter Estimation to Highly
Unstable Aircraft," AIAA-86-2020-CP, 1986.
(A1so published as NASA TM-88266, 1986.)



TONguyen, Luat T., Gilbert, William P.,
Gera, Joseph, I1iff, Kenneth W., and Enevoldson,
Einar K., “Application of High-Alpha Control
System Concepts to a Variable-Sweep Fighter
Airplane," AIAA-80-1582, Aug. 1980.

71Gera, Joseph, Wilson, R.J., and Enevoldson,
E.K., "Flight Test Experience With High-a Control
System Techniques on the F-14 Airplane," AIAA-
81-2505, Nov. 1981. '

12Gera, Joseph, "Simulation as an Analysis
Tool in Flight Test1n9 a Modified Control System
on the F-14 Airplane,” SES/SFTE Simulation-
Aircraft Test and Evaluation Symposium, Patuxent
River, Mar. 16-17, 1982.

73Gingrich, P.B., Child, R.D., and Panageas,
G.N., "Aerodynamic Configuration Development of
the Highly Maneuverable Aircraft Technology
Remotely Piloted Research Vehicle," NASA
CR-143841, 1977.

78patersen, Kevin L., "Flight Control Systems
Development of Highly Maneuverable Aircraft
Technology (HiMAT) Vehicle," AIAA-79-1789,
Aug. 1979.

Table 1 Pertinent values as a function of iteration

Ls(L)

75Matheny. Neil W., and Panageas, George N.,
"HiMAT Aerodynamic Design and Flight Test
Experience," AIAA-81-2433, Nov. 1981.

76Cooke, Douglas R., “Space Shuttle Stability
and Control Flight Test Techniques," AIAA-80-1608,
Aug. 1980.

77Young, James C., and Underwood, Jimmy M.,
"The Development of Aerodynamic Uncertainties
for the Space Shuttle Orbiter," AIAA-82-0563,
Mar. 1982,

784eil, Joseph, and Powers, Bruce G.,
"Correlation of Predicted and Flight Derived
Stability and Control Derivatives — With
Particular Application to Tailless Delta Wing
Configurations," NASA TM-81361, 1981.

79114 ff, Kenneth W., Maine, Richard E., and
Cooke, Douglas R., "Selected Stability and Control
Derivatives From the First Space Shuttle Entry,"
AIAA-81-2451, Nov. 1981.

80Maine, Richard E., and I1iff, Kenneth W.,
"Selected Stability and Control Derivatives from
the First Three Space Shuttle Entries," AIAA-
81-1318, Aug. 1982.

Table 2 Pertinent values as
a function of iteration

L oL (L) I - "
L (L) LgflL) #(L) v(L) JL
0 -0.5000 15.00 0.9048 2.855 21.21
1 -0.3005 9.888 0.9417 1,919 0.5191 0 -0.5000 15.00 0.9048 2.855 30.22
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Fig. 21 Summary of flight-derived esti-
mates of roll damping for M < 0.55 and

M= 0.9.
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Fig. 22 Comparison of flight-derived esti-

mates of dihedral effect with two sets of
wind tunnel data.
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Fig. 23 Comparison of flight and
wird tunnel estimates for Crmg -

Fig. 24 HiMAT remotely piloted research
vehicle baseline configuration.
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Fig. 25 Comparison of flight and pre-
dicted estimates for directional dynamic
gtability at a = 4° as a function of
Mach number.
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Fig. 26 Comparison of flight and pre-
dicted estimates for directional dynamic
stabilty as a function of angle of attack
at M = 0.9.
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(a) Differential elevon yawing moment
coefficient.
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(b) Rudder rolling moment coefficient.
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(c) Rudder yawing moment coefficient.

Fig. 27 Comparison of selected control
derivatives as functions of angle of
attack at M = 0.9.
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Fig. 28 Shuttle configuration.
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Fig. 29 Predicted STS-1 bank
maneuver at M = 24.
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Fig. 30 Actual STS-1 bank maneuver at 0 ’dﬁﬁ_\\‘ [P
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Fig. 31 Comparison of actual and
predicted STS-1 bank maneuver,
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Fig. 34 Comparison of simulated
bank maneuver with Ly; at a flight-
estimated value with the actual STS-1
bank maneuver.
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Fig. 35 Manual bank maneuver at M = 24

from STS-2.
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